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SOME NOTES ON A FIBONACCI-LUCAS IDENTITY

KUNLE ADEGOKE, ROBERT FRONTCZAK, AND TARAS GOY

ABSTRACT. In 2016, Edgar and, independently of him, Bhatnagar sta-
ted a nice polynomial identity that connects Fibonacci and Lucas num-
bers. Shortly after their publications, this identity was generalized in
two different ways: Dafnis, Phillipou and Livieris provided a gener-
alization to Fibonacci sequences of order k, while Abd-Elhameed and
Zeyada extended the Edgar—-Bhatnagar identity to generalized Fibonacci
and Lucas sequences. In this paper, we present more polynomial iden-
tities for generalized Lucas sequences. We discuss interesting aspects
and special cases which have not been stated before but deserve recog-
nition. Finally, we prove the polynomial analogues of these identities
for Chebyshev polynomials.
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1. MOTIVATION

As usual, the Fibonacci numbers F,, and the Lucas numbers L,, are de-
fined, for n € Z, through the recurrence relations F,, = F,_1 + Fj,_o,
n > 2, with initial values Fy = 0, Fy = 1 and L, = L, 1 + L, o with
Lo = 2, L1 = 1. For negative subscripts we have F_, = (71)"’1Fn and
L_, = (—1)"L,,. They possess the explicit formulas (Binet forms)

_aniﬁn

F, = ;
a—p

Standard references on these sequences are the textbooks by Koshy [8] and
Vajda [20] in which a huge amount of additional information is presented.

Our motivation for these notes is the following prominent identity due to
Edgar [7] and Bhatnagar [3] where they generalized two Fibonacci-Lucas
identities from [9, 10]:

L,=a"+p3", nel.

n
(1) Z o (L + (2 = 2)Fy1) = 2" Fop,

k=0

which is referred to as Edgar-Bhatnagar identity.

This identity holds for all x € C and the special cases z = 2 and z = 3,
respectively, have been proved by Benjamin and Quinn [2] and Marques [10].
A polynomial variant was given by Sury [18]. Dafnis, Philippou and Livieris
[5, 6, 13] have generalized this identity to Fibonacci and Lucas numbers of
order k and gave two different proofs for their generalization. In addition,
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using Euler’s telescoping lemma Bhatnagar derived in [3] an alternating
version of (1) as follows:
n
(2) S (=1Fa" (L + (2 = 2)Fr) = (—1)"Fuy1.
k=0

On the other hand, Abd-Elhameed and Zeyada [1], without a reference to
Edgar or Bhatnagar, derived two polynomial identities, one of which gener-
alizes the polynomial identity of Sury [18]. Finally, in a recent paper, Chung,
Yao and Zhou [4] provided extensions of Sury’s relation and the alternating
Sury’s relation involving Fibonacci k-step and Lucas k-step polynomials.

This paper continues along the same path and introduces additional poly-
nomial identities pertaining to generalized Lucas sequences. We delve into
various aspects and examine previously unexplored special cases. Addition-
ally, we provide proofs for the polynomial analogues of these identities for
Chebyshev polynomials.

2. ADDITIONAL POLYNOMIAL GENERALIZATIONS

In this section, we give generalizations of (1) and (2) to the general Lu-
cas sequences and prove two another identities of the same nature. For
non-zero complex numbers y and z, the Lucas sequences of the first kind,
(un(y, 2)),,>0, and of the second kind, (v,(y, 2)), >, are defined (see e.g.,
[14, Chapter 1]) through the recurrence relations

u"(ya Z) = yun—l(yvz) - Zu"—Q(yv Z)a n=2, uo(yvz) =0, ul(yvz) =1,

n (Y, 2) = yon—1(y, 2) — 2vn—2(y,2), n>2, wvly,2)=2,v1(y,2) =y,
with
—n

u_n(y, z) = _un(yvz)zinv 'Ufn(ywz) = vn(y,z)z
Denote by 7 and ¢ the zeros of the characteristic polynomial 22 — yx + 2z

for the Lucas sequences. Then
y—Vy:—4z

YtV -4z
o 2 2 ’

with 7 +0 =y, 7 — 0 = /y2 —4z and 70 = 2. The difference equations
are solved by the Binet formulas

T=7(y,%) , oc=o0(y,z) =

T gh
Up(T,0) = ————, vp(r,0) =1"+0".
T—0
We need the following two lemmas, of which the first one contains basic
telescoping summation identities.

Lemma 2.1. If (fx)rez is a real sequence and j, n € Ng with j < n, then

n

3) > (ferr = fr) = Fair = £,
k=3
(4) STDF (fesr + fi) = ()" fasr + (-1 /.

k=j
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Lemma 2.2. Forallz,y, 7€ C, r #0 and k € Z, we have

.’L'k
e (ron(y,2) + (@ — 2 (3, 2)

() st o
=Y (T—kuk+1(yvz) - rk—luk(yvz)),
ok
(07— 42)ru(y. 2) + oy = 2r)via (v, 2)
(6)

R+ 2k

(T 2) ~ ).
Proof. On account of the recurrence relation
(7) up1(y, 2) + 2ur-1(y, 2) = yur(y, 2)
and the identity ([14, Identity (2.7)])
(8) vy, 2) = w1 (Y, 2) — zuk—1(y, 2),
we have

0y, 2) + (2y = 2r)urs1(y, 2) = y(vuer(y, 2) — rux(y, 2))
and hence (5). The proof of (6) is similar. We use
(9) U1(Y, 2) + 20k-1(y, 2) = yok(y, 2)
and the identity

(10) (v — 42)ur(y, 2) = ve1 (¥, 2) — 201y, 2).

Theorem 2.3. For allz, y, r € C and j, n € Ny with j < n,

) Zrnkak (roe(y, 2) + (zy — 2r)uks1(y, 2))
k=i

="M yungq(y,2) — 7T

12) ; yr—k ok ((y2 — dz)rug(y, 2) + (xy — 2r)vg (v, Z))

= anrly'UnJrl (y7 Z) — It

Proof. To prove (11), sum (5) from j to n, making use of (3). The proof of

(12) is similar.

Remark 2.4. The equation (11) contains one result of Abd-Elhameed and
Zeyada [1, Theorem 1] as a special case at r = 1 and j = 0. Actually,
Abd-Elhameed and Zeyada stated their identity under the condition x # 0
(mutatis mutandis) but it is seen easily that it also holds for x = 0 as

ug = 0,u1 =1 and vg = 2. Identity (12) seems to be new.

yu;(y, 2),

I yvi(y, 2).
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Lemma 2.5. For all z, y, r € C and k, n € Z, we have

anhpk (rvkﬂ(% z) + (zy + 2rz)ur(y, Z))

(13) _ _

= y(r" " Fup i (y, 2) + Ry (y, 2),
(14) "R ((y? = 42)rug (y, 2) + (2y + 2r2)vi(y, 2))

= y(r" e R (y, 2) + rFa TRy, 2)).

Proof. Eliminating w1 (y, z) between (7) and (8) gives
ok(y, 2) = yur(y, 2) — 22up-1(y, 2)

and hence

rog(y, 2) + (xy + 2rz)up—1(y, 2) = ryur(y, 2) + zyur—1(y, 2),

from which (13) follows. The proof of (14) is similar; eliminate vg41(y, 2)
between (9) and (10). O

Theorem 2.6. For all x, y, r € C and j, n € Ny with j <n,

n

(15) D (DR (roga (y, 2) + (wy + 2r2)ur(y, 2))
k=

= (_1)nyrn+lun+1(ya Z) + (_1)]r]y$n—]+lu](y, 2)7

16) Z(fl)kxnfkrk ((y2 — 42)rups1(y, 2) + (zy + 2rz)vg(y, 2))
b=

= (=1)"yr" opia(y, 2) + (=177 ya" T s (y, 2).

Proof. Sum each of (13) and (14) from j to n, making use of (4) since the
right-hand side telescopes in each case. O

Remark 2.7. Identity (15) is an additional polynomial generalization of
identity (2). Identity (16), its Lucas version, is also presumably new.

3. APPLICATIONS TO FIBONACCI AND LUCAS POLYNOMIALS

This section is devoted to discussing in detail some special cases of The-
orems 2.3 and 2.6, thereby paying special attention to Fibonacci and Lucas
polynomials Fy,(z) and L,(x). The polynomials F;,(x) studied by Catalan
are defined by the recurrence relation F,(z) = F,_1(x) + F,,—2(x), where
Fo(z) = 0, Fi(z) = x, and n > 2. The polynomials L,(x) are defined by
Ly (z) = xLp_1(x) + Lp—2(x), where Lo(x) =2, L1(z) = x, and n > 2.

The polynomial identities presented in Proposition 3.1 below are also
special cases of Theorem 1 in [4]. We think, however, that they deserve to
be discussed. In the course of discussion we will rediscover some identities
from [1] but also present new relations that we did not find in the literature
and which deserve recognition.

First we note that Fy,(z) = up(z, —1), Lp(x) = vo(x, —1) and F,(1) = F,,
L,(1) = L,. Also, F,,(2) = P, and L,(2) = Qp, where P, and @, denote
the Pell and Pell-Lucas numbers, respectively. Other special values of these
polynomials will be used later.
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Corollary 3.1. For all z,y € C and n € Ny, we have

(17) ZI Li(y) + (2y = 2)Fra(y)) = 2"y Fpa (y),

(18) > (WP +DFe(y) + (wy — 2 L1 (y)) = y(@" Loy (y) — 2).
k=0

Proof. Set z=—1,r=1and 7 =01n (11) and (12). O

Corollary 3.1 provides two polynomial extensions of the identity (1). Both
identities connect interestingly Fibonacci and Lucas polynomials. Since

Ln(y) = Fu-1(y) + Fuy1(y) and (v + 4)Fu(y) = Ln-1(y) + Lu+1(y) (see
[8, Chapters 37 and 38]) they may also be disconnected:

> aF (@Fen(y) — Frly)) = "M Fopa(y)
k=0

and

Zx xLgy1(y) — Li(y )) = 2" L (y) — .

Corollary 3.2. For all x € C and n € Ny,

n
(19) > (L + (x = 2) ) = 2" Foy,
k=0
n
> b (5F + (v = 2)Lpsr) = 2" Lyga — 2,
k=0
n
(20) > 2 (Qr +2(x — 1) Prga) = 22" Poya,

k=0

NE

zF (4Pk. + (z— 1)Qk+1) =2"MQu — 2.

o~
Il

0
Proof. Set y =1 and y = 2, in turn, in (17) and (18). O

Remark 3.3. We point out that (19) and (20) are not new. These are
Equations (11) and (15) in [1].

Corollary 3.4. For all x € C and n € Ny,

n
Zﬂfk Lak + (22 — 1) Fypp3) = 22" Fypp 5,
k=0

n
Z Ik 5F3k + (22 — 1)L3k+3) = 2In+1L3n+3 — 4.
k=0

Proof. Set y = 4 in (17) and (18), respectively, and use the evaluations
Fo.(4) = Fs,,/2 (see [19]) as well as Ly, (4) = Ls,,. O
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Corollary 3.5. For alln € Ny,

n
Z2kx"7kLk(x) = Q”HFnH(x), zeC,

k=0

- 2
ZQkxnkok.(ac) = 27(2”Ln+1(a:) -2, zeC\ {£2}.
P z4+4

Proof. Interchange = and y in each of (17) and (18) and set y = 2/z. d

The results in Corollaries 3.6 —-3.9 are identities involving only even-inde-
xed Fibonacci and Lucas polynomials.

Corollary 3.6. For all z,y € C and n € Ny, we have

(21) > 2" (yLar(y) + (2(y° +2) — 2) Farya(y)) = 2" (4% + 2) Fansa(y),
k=0

n

(o) 2 2 (y(y? + 4) Fa(y) + (2(y® +2) — 2) Lors2(y))

= (y* +2) (2" Lansa(y) — 2).
Proof. We only prove (21). Use Corollary 3.1 and relations

Z‘n—lFQ"_(“T)
x

)

L, (i(z® +2)) = i"Lop(z) and F,(i(z® +2)) =

where i = v/—1. These relations are proved easily by inserting the respective
values into the Binet forms. When simplifying replace x by x/i. The other
proof is similar. O

Corollary 3.7. For all x € C and n € Ny,

Z.Z‘k (Lgk + (3{13 — 2)F2k+2) = 3:1/‘n+1F2n+2,

k=0
n
Z:L‘k (5F2k + (3$ - 2)L2k+2) = 3(l‘n+1L2n+2 - 2),
k=0
n
Zxk (Qak + (3x — 1) Pyjey2) = 32" Py,
k=0

n

l‘k (SPQk + (31‘ - 1)Q2k+2) = 3(1‘n+1Q2n+2 - 2).
k=0

Proof. Set y =1 and y = 2 in (21) and (22), respectively. O
Corollary 3.8. For all x € C and n € Ny,

Zxk (3L4k + (71‘ - 2)F4k+4) = 7x"+1F4n+4,
k=0

> b (15Fy + (T — 2)Lagra) = 7(¢" Lan 4 — 2).
k=0
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Proof. Set y = /5 in (21) and (22), respectively. Then, utilize the evalua-
tions Fy,(v/5) = (v/5/3)Fyy, and Lo, (v/5) = Lyy, which can be easily proven
by substituting the respective values into the corresponding Binet form. O

Corollary 3.9. For all x € C\{0} and n € Ny,

n 2 —
S (552) " rae) = 2 Fana (o),

k=0
"L a2 4 2\ n—k 2 x? 4 2\l
F. =——— (Lo, -2 :
;_(J( 2 ) (%) z(x? +4) ( 2n+2() ( 2 ) )
Proof. Set @ = ;%5 in (21) and in (22) and replace y by . 0

The next identities provide still other interesting relations that nicely
generalize and complement Edgar-Bhatnagar identity.

Proposition 3.10. For all x € C and integers m and n € Ny, we have

n
(23) Zwk (FmLmk + (‘TLm - 2)Fm(k+1)) = xn+1LmFm(n+1)v
k=0

> @ (5FmFnk + (€L — 2) Linges1)) = Lin (2" L1y — 2).
k=0

Proof. We only prove (23). Let m be odd. Then by straightforward calcu-
lation Lg(Ly,) = Lk and Fy(Ly,) = For/Fn, where we used the identity
L2 = 5F2% + (—1)"4. This immediately gives the first identity, using (17).
Let m be even now. Then we work with ¢L,, as an argument and get
Li(iLy,) = i* Ly and Fy(iLy,) = i* 1 Fk/Fy,. Inserting these results into
(17) and finally replacing x by x/i completes the proof. O

We proceed with a (short) discussion of Theorem 2.6. Making the choices
z=—1,r=1and j = 0 it becomes the next identities for Fibonacci and
Lucas polynomials, which can also be obtained from [4, Theorem 1].

Proposition 3.11. For all z, y € C and n € Ny, we have
n
24) D ()" (L (v) + (2y — 2 Fe(v)) = yFui (v),

k=0
n

(25) D> (=" (WP + 9 Faga (y) + (xy — 2)Li(y))
k=0
=yLp1(y) + 2(—1)"yz" 1.

Corollary 3.12. For all x € C and n € Ny,
S (D) (L + (@ = 2)F) = Fuga,

k=0
n

> (1) R R (5F + (@ = 2)Li) = Lnya + 2(=1)"2™,
k=0
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S =1 Fa T (Qui + 2(x — 1) Py) = 2P,

k=0
Z(_l)nkanfk(4pk+l + (.Z' _ 1)Qk) = Qni1 + 2(_1)nxn+1.
k=0
Proof. Set y =1 and y = 2 in (24) and (25), respectively. O

The first identity in the corollary above was derived in [11].

We are not interested in repeating the analogous results to Corollaries
(3.4)—(3.9). We mention, however, that the symmetry gets lost when passing
from Proposition 3.10 to its alternating analogue.

Proposition 3.13. For all x € C and integers m, and n € Ny, we have

Z(_l)n—kxn—k (FmLm(k+1) + (wLm - 2)ka) = LmFm(n+1)7 m odd,
k=0
n

Z "k (FmLm(k+1) — (zLpm, — 2)ka) = LimFyyng1), m even.
k=0
Similarly, we have

n

> (1) Fe R (5 Fogt) + (€L — 2) Lok
k=0
= L (Lin(nt1y + 2(=1)"2"*1),  m odd,

> " (5FnF 1) — (@Lm— 2)Limk) = L (Lynnr1)— 22™F1), m even.
k=0

4. EXTENSION TO CHEBYSHEV POLYNOMIALS

Let T, (y) and U, (y) be the Chebyshev polynomials of the first and second
kind defined by Ty(y) = 1, T1(y) = y and for n > 2

(26) To(y) = 2yTn-1(y) — Tn—2(y)
and Up(y) = 1, U (y) = 2y and for n > 2
(27) Un(y) = 2yUn—1(y) — Un—2(y)-

Both sequences (T5,(y))n>0 and (Uy(y))n>0 can be extended to negative sub-
scripts by writing 7, (y) = Ty.(y) and U—n(y) = 2yU_(n—1)(y) —U_(n—2)(y)-
See [12] among others for further information on these polynomials.

Lemma 4.1. Forallxz, y, r € C, r #0 and k € Z, we have

.Z'k .Z'k+l .Z’k
@) T + oy = 0) = (U — Vi),

and

E

T (W% = V)rUpa(y) + (zy — 1) Ti(y))

k+1 k
X X
=y ( E Tk(y) — Tk—_lTkl(y)>-

<

(29)
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Proof. In view of the recurrence relation (27) and the identity 2Ty (y) =
Ui(y) — Ug—2(y) [12, Chapter 1], we have

rTi(y) + (zy — r)Uk(y) = y(aUr(y) — rUk-1(y)),

from which (28) follows. Similarly, using the recurrence relation (26) and
the identity 2(y? — 1)Ug—_2(y) = Tk(y) — Tx—2(y) [12, Chapter 2] we obtain

(y* = DrUs—a2(y) + (zy — 1) T (y) = y(aTi(y) — rTr-1(y))
from which (29) follows. O

Theorem 4.2. For all x, y, r € C and j, n € Ng with j < n, we have

D R (1 T(y) + (wy — 1) Uk(y)) = 2" yUn(y) — 77 adyUs o (y),
k=j
n

ST Rk (g2 = 1DrUk-a(y) + (2y — 1) Ti(y))

pa
"y Ta(y) — v ady Ty (y).

In particular, we have

> 2 (Tuly) + (xy — DU(Y)) = 2™ yUn(y),

as well as
> (7 = VUia(y) + (zy — DT(y)) = 2" yTuly) —
k=0
Proof. Sum each of (28) and (29), using (3). O

Lemma 4.3. For all x € C, and n € Ny, we have

Un(@) (- 1)”+ ;U2n+1 (zx) x #0,

2 2
2+ 2 i
T () = 0T ()
5 (=1)"Tzn( 5
Proof. Both identities can be proved by induction on n. O

Corollary 4.4. For all nonzero z,y € C and all n € Ny, we have
> (=1 Rk (2yTon(y) + (21 = 20%) = 1) Vs ()
k=0

= 2" (1 = 20%)Uzni1 (y),
Z(—l)n_kxk (Qy(y2 — DUsp—3(y) + (x(1 —2¢%) — 1>T2k(y))
k=0
= 2" (1 = 2¢*) Ton(y) — (=1)"(1 — 2¢%)?
with U_3(y) = =2y, U_2(y) = —1 and U_1(y) = 0.
Proof. Combine Theorem 4.2 with Lemma 4.3 and simplify. O
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5. CONCLUSION

In this note we have provided various complements to Fibonacci—Lucas
identities first proved by Edgar, Sury, and Bhatnagar [3, 7, 18]. Start-
ing with additional polynomial generalizations, we have also presented a
detailed discussion of charming identities for Fibonacci and Lucas polyno-
mials as special cases. Finally, we have proved the analogues for Chebyshev
polynomials. We conclude noting two observations. First, concerning the
results for Fibonacci and Lucas polynomials we remark that our results can
be combined with the beautiful identities derived by Seiffert [15, 16, 17] to
get some nontrivial sum relations. This is left as a possible future research
project. Second, as it was shown here, the identities introduced and dis-
cussed are not limited to Fibonacci and Lucas, and Chebyshev polynomials.
Analogues are possible for Pell polynomials, Jacobsthal polynomials and
others. By way of a final illustration, we state the identities in Theorem 2.3
for the Jacobsthal and Jacobsthal-Lucas sequences (J,) = (un(1,—2)) and
(Jn) = (vn(1,-2)): For all z, r € C and s, n € Ny with s < n, we have

n
Z Pk gk (rjk + (x — 27")Jk+1) =" — st g
k=s

n
Z PR (9T 4 (2 = 20)jrgr) = 2" gy — " 2t
k=s

Interesting identities can be drawn from these relations. We leave them for
the interested readers.
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